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The finite difference Galerkin (FDG) method is extended to time dependent incompressible
Navier-Stokes equations. Two algorithm development examples are given that use a staggered
grid and centered differencing scheme for the primitive variables. Mass balance is used to
solve the essential problems associated with applying the FDG method. The use of the FDG
method with this underlying discretization is shows to be the discrete analog of the continuum
manipulations that lead to the fourth-order streamfunction equation. Asymptotic and time
evolution results obtained with a Crank-Nicolson Adams-Basforth algorithm are compared
with published computations for Re 400, 1000, and 3200. = © 1989 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the development of finite difference algorithms for
unsteady incompressible Navier-Stokes equations. The momentum and continuity
equations for incompressible flows cannot be directly integrated in time because the
continuity equation is not given in a time evolution form. In primitive variable for-
mulations one approach has been to use a fractional time step method. The inter-
mediate step introduces a velocity solution to the momentum equations without the
pressure gradient, and then the pressure and velocity fields are successively
corrected until the continuity equation is satisfied. The successive correction of
pressure and velocity is equivalent to projecting the intermediate velocity solution
onto the subspace of discretely divergence free velocity fields. This general approach
was developed by Chorin [3], and a specific example is given in Kim and Moin
[11]. Another general method for solving incompressible flow problems in
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primitive variables is to directly couple the momentum and continuity equations.
Moin and Kim [13] use direct coupling by simultaneously solving the momentum
and continuity equations for velocity and pressure. Indirect coupling is used in the
pressure Poisson method introduced for two dimensions by Harlow and Welch [9]
and extended to three dimensions by Williams [227]. This approach combines the
divergence of the momentum equation with the continuity equation to obtain a
Poisson equation for the pressure. A third general approach that has been widely
used in two dimensions is the streamfunction and vorticity formulation, as in
Fromm [4] and Roache [16]. The vorticity transport equation is obtained by
taking the curl of the momentum equation, and this eliminates the pressure
gradient. The velocity solution is obtained from the stream function so that it
automatically satisfies the continuity equation. Particular difficulties with this
method have been caused by the vorticity boundary conditions, and by the
coupling between the vorticity and the streamfunction along the boundaries.
Weak forms of the incompressible Navier—Stokes equations can be formulated
without the pressure gradient and the continuity equation. Incompressibility is
obtained by restricting the function space of velocity solutions, and the continuity
equation is viewed as a constraint for defining the solution space. This approach is
useful both for the analysis of the Navier-Stokes equations (Ladyzhenskaya [12]),
and for the development of numerical algorithms (Temam [20]). A numerical
algorithm is generally developed after manipulating the partial differential
equattons and their solution spaces. In the context of Galerkin ideas, Stephens, Bell,
Solomon, and Hackerman [19] use their finite difference Galerkin (FDG) method
for the numerical solution of steady incompressible equations. They begin with a
discretization of the primitive variable equations, and then they manipulate the
finite difference equations and their solution spaces to obtain a convenient
algorithm. The essential features of the FDG method are the expansion of the
discrete velocity solution using a basis for the discretely divergence free vector fields
on the grid and derivation of equations for the expansion coefficients by taking the
inner product of the expansion vectors and the discrete momentum equations. The
only exceptional constraint is that the primitive variable discretization for the
divergence operator in the continuity equation must be the adjoint (matrix trans-
pose) of the discretization for the gradient operator applied to the pressure in the
momentum equations. If the discrete divergence and gradient operators are the
adjoints of each other, then the discrete pressure gradient will drop out of the
derived equations. The FDG method applies in two or three dimensions and may
be used with any primitive variable discretization that is chosen by the user. The
essential problems in applying the FDG method are to find a basis for the nullspace
of the discrete divergence operator and to find a particular solution of the discrete
continuity equation that accounts for the velocity boundary values that are
prescribed by the problem that is being solved. The FDG method is equivalent to
the dual variable (DV) method of Amit, Hall, and Porsching [1]. The DV method
has been used for practical problems with steady and unsteady flows and has been
extended to both compressible flows and the finite element method (see Hall [8]).
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The DV method also starts with a primitive variable discretization and is essentially
a variable reduction method using network theory algorithms as a systematic
method for obtaining a basis of nullvectors for the discrete divergence operator and
for obtaining a particular solution to the continuity equation that assumes any
boundary values prescribed for the flow. A similar variable reduction method has
been used in the solution of nonlinear electrical network problems (see Rheinbolt
[15]). Both Amit efal. [1] and Stephens et al. [19] have suggested that in two
dimensions it is possible to relate the dual variables or expansion coefficients to a
discrete streamfunction.

We begin this paper in Section 2 by presenting a general extension of the FDG
method used by Stephens ezal. [19] to unsteady incompressible flows. A con-
tinuous time treatment is used for this presentation, since specific algorithms may
be developed with any time discretization. This general formulation is valid in two
or three space dimensions and provides a discretely divergence free velocity solution
without requiring a pressure solution. The presentation of the general method is
more theoretical than the rest of the paper, and readers are urged to begin with
Section 3 if they are more interested in the details of implementing this method. An
example of the general method for developing algorithms is given a detailed treat-
ment in Section 3. The primitive variable discretization used by the method in
Section 3 is on a staggered MAC grid with central differencing, and we show how
discrete mass balance can be used to solve the essential problems associated with
applying the FDG method. The driven cavity problem is used as a simple example.
In Section 4 we show in detail that the resulting FDG expansion variables may be
directly interpreted as a discrete streamfunction and that our choices of primitive
variable discretization and expansion vectors in the FDG method are equivalent to
formulating -an algorithm for the time dependent fourth-order streamfunction
equation. This method of aigorithm development can use a staggered grid and mass
balance for a primitive variable formulation, with the FDG method leading to a
reduction of variables in the derived streamfunction formulation, while the discrete
streamfunction interpretation of the derived variables yields a primitive variable
solution that is discretely divergence free with all velocity components defined at
the same point. Section 5 contains a discussion of how mass balance may be used
to adapt the general method to problems in two dimensions with throughflow and
with obstacles in the flow field. Section 6 presents numerical results using an
algorithm developed in Section 3, with comparisons to published computations.
Results are reported for the asymptotic steady state flow in a driven cavity at
Re =400, 1000, and 3200. Results are also shown for the unsteady vortex dynamics
at Re = 1000 in driven cavities with aspect ratios 1 and 2, including the dramatic
evolution of secondary vortices from bubble recirculations starting on the
downstream wall.
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2. THE FINITE DIFFERENCE GALERKIN METHOD
FOR UNSTEADY ViscOUS INCOMPRESSIBLE FLows

Let 2 be a bounded open region in R? or R? with boundary Q. The dimen-
sionless incompressible Navier-Stokes equations in Q2 are

Z—I:+V~(uu)——RLeAu=-Vp+F, for xin £ and >0, (1a)
V.u=0, for xin £ and >0, (1b)

u(x, 0) =a(x), for xinat¢=0, (1c)

Blu(u, /)] =b(x, 1), for xindQand >0, (1d)

where u is the velocity, p is the scaled pressure, Re is the Reynolds number, F is
the volume force per unit mass, and B is the operator that defines the boundary
conditions. If u=B[u]=Db in 0Q, then the boundary data must satisfy the
constraint

j b(x, 1) -n(x)ds=0, for >0, (le)
a2

with n as the outer normal to the boundary d€2. The convenience of known velocity
values on the boundary is usually absent from practical problems. In common
applications at least part of the boundary is artifically imposed in the flow in order
to restrict the domain of the computation, and the artifical boundary algorithms
may not correspond to the usual boundary conditions that are treated theoretically.
In order to accomodate problems like this, let 02, and 0Q, be disjoint with
0Q =0Q, U 082,, where u is specified on 02, and unspecified on 0€2,. Weaker forms
of the equations for incompressible flow can be derived by starting with the L?
inner product equation

%fgu-vdv+jg[V-(uu)—ﬁl—eAu]-vdu=jg[—Vp+F].vdu, 2)

for ¢ in (0, T], where v is an arbitrary member of a suitably chosen space of
divergence free functions defined in Q, and where 7> 0 is a fixed time. Seeking a
solution by using equations and algorithms derived from (2) can separate the
problem of finding the velocity u from that of finding the pressure p. If the test func-
tion v in Eq. (2) satisfies V-v=0 in Q and v(x)=0 in 092, then the pressure term
is eliminated from (2) by Gauss’ Theorem. The usual Galerkin method makes a
choice of function spaces for the solution u and test functions v which will ensure
both that the pressure does not appear in the weak equations derived from (2), and
that the solution is incompressible.

The FDG method is very similar to standard applications of the Galerkin
method with a few important differences. The most important difference is that
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standard Galerkin methods begin with weak continuous equations like (2), while
the FDG method begins with a primitive variable finite difference approximation of
(la)-(1d). This difference amounts to a choice of where to stop manipulating the
continuum problem, and of where to begin manipulating its discrete approximation.
The point where discretization begins naturally implies that there will be differences
in the function spaces for admissible solutions and trial functions. For a typical
application of the Galerkin method in developing a finite element algorithm, the
function spaces consist of piecewise smooth functions that give a solution which is
defined for every point in the domain Q. The function spaces for the FDG method
are defined on the discrete points of the computational grid. The spaces of solution
and trial functions for applications of the Galerkin method are typically constrained
by boundary conditions from the partial differential equations. The FDG method
incorporates the boundary conditions in the primitive variable discretization of the
momentum equations, and obtains the constraint for the solution and trial function
spaces from the discrete continuity equation. The nullvectors for the discrete
divergence operator are used as a basis for the trial function space, and any
prescribed boundary values are assumed by a specific solution of the continuity
equations. As in standard applications of the Galerkin method, the solution of the
discrete momentum equations is expanded in terms of these basis vectors, and
equations for the expansion coefficients are obtained from the inner product
between these nullvectors and the discrete momentum equations. In order to apply
the FDG method, the discretization of the gradient operator for the pressure in the
momentum equations must be the adjoint (i.e., transpose) of the discretization of
the divergence operator in the continuity equation. Stephens efal. [19] have
already applied the Galerkin method in this way to steady viscous incompressible
flow.

In order to apply the Galerkin ideas we must introduce a discrete grid and spaces
of scalar and vector valued functions defined on the grid, and we must introduce
a spatial discretization of equations (la)~(1d). A finite difference grid denoted by G,
will be introduced in Q L 0Q2,, and the grid in 0Q, will be denoted by BG,, where
# is an indicator of the mesh size. The set of all possible vector and scalar valued
functions on G,u BG, will be denoted by V, and F,, respectively. Denote an
element of V, by i, and let I, and II,, be index sets for the scalar components
of V, defined on G, and BG,, respectively. If die V,, then ii= {u,:iel,;ul,,},
where u, are the discrete scalar components of @, and not the discrete vector field
elements of V. The discrete velocity components indexed by 1,; and defined on G,
are not determined by prescribed boundary data, while the components on BG,
indexed by I,, are determined by boundary data. For a staggered grid some of the
velocity components in cells along the boundary may be defined as boundary data
on BG,, while other components in the same cells must be found as part of the
solution on G,. Denote an element of F, by p, and let I, and I, be index sets for
the components of F, defined on the grids G, and BG,, respectively. If pe F, then
p={p;ielulg}. On a staggered grid it may be appropriate to define F, on
just G, and not on BG,, and the physical location in the grid cells of F, values may
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be different from the locations of any of the velocity components. Define an inner
product on V, by

V)= 3 wuv, 3)

iely;ulyy

for @i and v in V,, and define an inner product on F, by

(P g>= Z Piqis
ielpulp
for p and § in F,. The discrete inner product (i, ¥) is just the component by com-
ponent product across the entire discrete vector field. Let di and gr represent dis-
crete divergence and gradient operators, where di is an operator from V), to F, and
gr is an operator from F, to V,. Let the discretely divergence free subspace of V),
be D, = {iie V,:di(i)=0}. Let D} be the subspace of D, with zero values in BG,.
Let na(ii) be a discrete nonlinear operator defined on V), that approximates the
continuous terms V- (uu)— (1/Re) 4u from (1a), and that includes an approxima-
tion of the boundary operator B on é€2,, where u is not specified. Let T be a discrete
approximation of the volume forces F from (la), where T may just be a constant
vector in V,. With this notation a continuous time discretization of Eqgs. (1a)—(1d)
may be written as
di

E+ na(i) = —gr(ﬁ)-}-f, for >0, (4a)

for the unknown discretely divergent free velocity solution as a function of time
(7):[0, T]— D, (4b)
and for the discrete pressure solution p(r): [0, T']+— F, as a function of time, with

i(0) =4, inG,att=0, (4c)
i(1)=b(s),  in BG,fort>0, (4d)

where a and b(z) are mesh functions on G, and BG,® (0, T] that discretize a in Q
from (1c) and b in 02, from (1d), respectively. Equations (4a)—(4d) are a coupled
first-order system of nonlinear ODE for the unknown velocity components
{u1):iel,,;} of the discrete solution @(¢) for te (0, T]. Note that the divergence
free constraint no longer appears since it has been incorporated in the definition
(4b) of the function space for the solution, and that the boundary operator B on
092, no longer appears since it has been incorporated in the space discretization.
Note also that at this point we could discretize in time before proceeding with the
discrete Galerkin formulation. We will continue with a continuous time and discrete
space formulation because of the similarity with a general pattern of use for
the Galerkin method, and because this approach will also easily lend itself to the
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formulation of a variety of time discretizations after the FDG method has been
applied to the space discretization.

We will now proceed with the discrete Galerkin formulation for the time
dependent case, based upon the primitive variable continuous time discrete space
formulation (4a)-(4d). The solution vector i(¢): [0, T]— D, of (4a)-(4d) may be
written as i(t) = W,(¢) + Wo(¢), where Ww,(¢):[0, T]— D, is discretely divergence
free with w,(¢) = b(¢) in BG, for 1>0, and where W,(¢) is an undetermined element
of D) for 0<t<T. The role of w,(¢) is to reduce the computational problem to
finding the discretely divergence free solution Wy(¢) with homogeneous boundary
data in D}. The particular solution W,(t) is introduced in order to handle the
prescribed boundary values, and in order to simplify finding a basis for the discretely
divergent free subspace D) which contains Wy(¢). In the next section a detailed
example is given of DY for a specific problem, and of how to find a basis for D}
using mass balance. A detailed discussion of DY and its basis for general problems
is given in Section 5. For the general situation under discussion, let the dimension
of DY be d=dim(D}), and let {&,}_, be a basis for D}. Since {&,}s_, is a basis for
Dy, there exists unknown real valued functions {z,(¢):[0, 7]+ R}7_,, such that
Wo(t)=3¢_, z,(t) &, There is an equation in the system (4a) for each undetermined
discrete velocity component defined on the grid, or for each separate index igl,,,
and the expansion vectors {&,}7_, of D) have nonzero components only on the grid
G,, or for each index iel,,. If the separate scalar equations in (4a) are ordered
consistently with the order of the unknown interior velocity components
- {u;:iely;}, then the inner product between the vector equation (4a) and the
expansion vectors may be computed as in (3). If di and gr are adjoints of each other
in the sense that for all ie V, and for all pe F, with pii=0 in BG,,

{di(u), p) = (&, gr(p)), (5)
then for L=1, ..., d we have
(&, gr(P))=<di(§,), p> =<0, p>=0,

since €, € D° so that di(&,)=0. If (5) is satisfied, then a discrete solution to the
Navier-Stokes equations on the given mesh may be obtained by solving the system
of nonlinear ODE,

d d
5 (éL,é,)%Zt’+(éL,g;fv,,(z))=<EL,T—na (w,,(t)+ 5 z,é,)), (6a)
I=1 I=1

for L=1,..,d, where the discretely divergence free W,(t)e D, is assumed to be
known and to satisfy W,(t) = b(7) on BG,. The initial data for {z,(r)}¢_, is obtained
from

a=w,(0)+ ) z,(0)¢, (6b)

=1
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and the final velocity solution is obtained as

d
() =w,(t)+ Y z,() €, (6¢)
=1
Equation (6a) is a discrete analog of (2). Note that if (5) is satisfied, then the
pressure terms have dropped out of (6a). Note also that there is no reference to the
space dimension in the derivation that leads up to (6a)-(6c), so that the FDG
method may be applied in two or three space dimensions. The discrete divergence
equation no longer explicitly appears, but it can still play a role in finding the
particular solution W,(¢) that satisfies Wp(t)=5(t) on BG,. Let us write w,(1)=
W,(¢)+ W,(), where W) and W,(z) are zero valued on BG, and G, respectively.
Let 4 be a matrix representation of di restricted to elements in V), that are zero on
BG,. Since W,(t)eD,, 0=di(W,)=di(W; + W,) = AW, + di(W,). We know W, from
the boundary data b, so that we can find W, from the underdetermined linear system
AW; = —di(W,).
The continuous time algorithm in Egs. (6a)-(6¢c) may be solved or approximated
in any manner that is convenient. We shall introduce two examples of discretization
in time. For a two time level discretization we may use the general form

n+1 o1 n+l — W

d n
- 2 ey (cLs J)
c,,C

,;( L &) TR At

=6<EL,T—na( wotl 4 Z z”*“))
=1

+(1—9)<5L,1‘—na (cv;+ 5 z;'é,)), (7)

=1

for L=1, ..,d, where 0<8<1. For the second time discretization we must write
na(il) = cv(ii) — df(ii), where cv(ii) and df(i) are discrete operators defined on ¥V,
that approximate the continuous terms V-(uu) and (1/Re) 4u in (la). We may
write a Crank—Nicolson Adams—Bashforth time discretized scheme as

27+1_ZI (cL’ n+1_wn)

d
§ €, &) At At

d
(c,_, [df(z z"*‘é,+w"+1)+df(z z;’é,+€v;>])
=1

—<EL,%[3cv<i z?é,+v~v;>—cv<i 27’15,+W;“>]>+(EL,7), (8)

for L=1, .., d Note that the specific formulations resulting in algorithms (7) and
(8) could also have been obtained by first discretizing in time as well as in space,
and then using the discrete Galerkin expansion and derivation of equations for the
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expansion coefficients. The general formulation in (6a)-(6¢c), and the two time
discretizations in (7) and (8) are very abstractly stated and are the end result of
applying the FDG method to the continuous time formulation (4a)-(4d). The FDG
method manipulates the spatial discretization in order to reduce the computational
effort required to obtain a solution, and is essentially independent from the time
discretization. The point of the FDG method is to reduce the computational
problem at the nth time step from finding &” and " to that of finding {z}}¢_,. An
example of the specific details required to actually implement this abstract and
general algorithm is given in Section 3. Section 4 discusses the interpretation of the
coefficients {z7}7_,, and Section 5 discusses the details required for general
problems.

3. ALGORITHMS ON A TwO-DIMENSIONAL STAGGERED GRID

In this section we will use the general FDG method to develop an algorithm
specifically for the time dependent driven cavity problem in two space variables.
The flow is normalized on a 1x1 square with zero initial flow and with an
impulsively started lid moving to the right with unit velocity. This problem is
illustrated in Fig. la. We will not include the volume force F in Eq. (1a). The
velocity will be denoted by u(x, t)= (u(x, y, 1), v(x, y, t)). The initial data in equa-
tion (1c) is a(x) =0, and the boundary data in Eq. (1d) is b(x, ¢) =0 everywhere on
the boundary except for b(x, 1, t) = (1, 0). The flow field variables will be defined on
a staggered uniform grid with A4x = 4y = h. The interior mesh cells will be indexed
in the x direction by i for 1 i</, and in the y direction by j for 1 < j < J. A typical
cell with positions for the variables is given in Fig. 1b. A velocity component
defined on a cell face will be interpreted as a velocity average over the face.

The application of the FDG method to a continuous time discretization (4a) is
useful theoretically, but for the practical development of an algorithm it is easier to
apply the FDG method to a primitive variable discretization in both time and

a
?‘ —————>  the lid velocity u, b 4\ Vi

ymvumy" MARALAASAR B ERRA 112 LA L)
\

FiGc. 1. (a) The driven cavity problem. (b} The (i, j) cell with variable locations.
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space, and this is how we will proceed. For second-order time and space accuracy
we will use a Crank—Nicolson time discretization and a centered space discretiza-
tion for all primitive variable terms in Eq. (la). We will follow Harlow and Welch
[9] and Welch eral [21] in the treatment of central space differencing on the
staggered grid. The discretized momentum equation (la) without the body force
can be written as
ﬁn+ 1__ &n 1

T +§(na(ﬁ"“)+ATﬁ"“+na_(ﬁ")+AT13")=0, G
where 2" and p™ are the discrete velocity and pressure solutions at time ¢,,, and
where na(i™) and ATj™ are the space discretizations for the continuous terms
V- (uu)— (1/Re) 4u and Vp at time ¢,,. Note that AT is a matrix and that na is a
nonlinear operator. Note also that centered differences are used for discretizing all
of the space derivatives. This discretization applies directly to the equations in the
interior cells but must be modified next to the boundaries to accomodate the
boundary conditions. The finite difference approximations for the nonlinear
derivatives are not effected next to the boundaries since the discrete forms compute
the product of a tangential velocity component in an exterior cell with zero
boundary values of the normal velocity component. The only term that is actually
effected is for diffusion normal to the boundary, and we will use the standard
procedure for staggered grids by defining an exterior cell velocity with the aid of the
boundary conditions. Note that the only inhomogeneous boundary data is the lid
velocity which is incorporated in the expression for (1/Re) 8*u/dy” in cells next to
the lid. Since the lid velocity is tangential to the cavity, it does not appear in cell
centered divergence calculations. Consequently, this known boundary data may be
incorparated as a source term in the discrete primitive variable momentum
equations, the tangential velocity values on the boundary may be excluded from the
discrete velocity field for the computational problem, and the continuity equations
will be homogeneous. The discrete incompressible velocity solutions that we
consider for this example will therefore be in the subspace DY of discrete divergence
operator nullvectors that have zero boundary values, and the vector of discrete
velocity components will only need to include those components defined at
positions inside the cavity. The components will be ordered by cell across the mesh
and ordered within cells as # then v. If we let & be a discrete velocity vector defined
on the interior mesh faces, then the transpose of i is

~T _
u = (ul,]’ Uigs s Up 1 15 Vg1 U as vees U g1 Uy gy U gy ey “171,1),

since the u values for cells with i=0 or i=1 and 1 € j<J represent zero boundary
velocities across the upstream and downstream walls, while the v values for cells
with j=0 or j=J and 1<i</ represent zero boundary velocities across the
bottom wall and the upper lid. The pressure is defined at the center of each indexed
cell on the interior mesh, so the transpose of the vector of discrete pressure values
may be represented as

Pl =(Pi1s P21s s Pra)
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For this staggered grid there are M,=I1(J— 1)+ ([—1)J=2IJ— I —J components
in @, and m, = IJ components in j.

We may interpret the continuity or divergence free constraint as the requirement
that there is no net flow across the boundary of each cell at every discrete time. The
appropriate discretization in the (i, j) cell at time ¢, is

Ui~ Ui 1,j+‘fj_"?171=0' (10)

Ax Ay

Along the two side walls and the bottom there is an obvious modification of this
constraint. For cells next to the upper lid, the v velocity on the upper cell face is
zero, and this is the velocity on that face which must be used in the divergence
constraint (10) next to the upper lid. The lid velocity u= (1, 0) is tangential to the
lid and does not contribute to the mass balance for a boundary cell next to the lid.
The linear system representing (10) on the entire mesh may therefore be written at
each discrete time ¢,, as the matrix equation

A" =0, (11)

where for this problem the matrix A is a discretization of di on the interior mesh.
Since (10) applies to each cell, (11) represents IJ equations in 21J — I —J velocity
components, so that A is an IJ x (2IJ — I —J) matrix. There is a discrete evolution
equation in (9) for each unknown velocity component, so that (9) represents
21J — I — J equations. Since p™ is a vector with 1J components, the discrete gradient
operator gr used on p™ must have a (21/—I—J)x IJ matrix representation. The
matrix dimensions for the discrete representations of the divergence and gradient
operators are consistent with each being the transpose of the other, and the
discretizations have been chosen to ensure that this is true with the matrix A”
representing the discrete gradient operator gr. Because there is no flow normal to
the boundary, the discrete analog of Gauss’ theorem implies that the rows of A add
to zero, and system (11) is underdetermined. There is at least one redundant
equation, so that the dimension of the nullspace DY of A is

d=dim(Null[A]) < QU -I-J)-J+1=(I-1)(J-1).

To find typical nullvectors for A consider the flows in Figs. (2a)-(2b). Each of these
flows go through four cells around their common corner at the intersection of the
two grid lines between the cells, with an equal flow across each of the faces between
adjacent cells. If /I=i+ (j—1)I~1)for 1<i<I—1and 1<j<J—1, then there is
a nullvector &, like this associated with the grid intersection at the upper right-hand
corner of the (i, j) cell. If cx; ; and cy, ; are the components of &, that correspond
to u, ; and v, ;, then the only nonzero components of &, are

&L

1
Cxi,j=z’ Cyl'+1,j=z5 CX; 1= _Z, i ;= T
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(a) Nullvector flows on a 4 x4 grid. (b) Nonzero components of a typical nullvector flow.

(c) Components of A for a 4 x4 grid, scaled by 4. (d) Components of nullvectors for A on a 4 x4 grid,

FiG. 2.
scaled by A.

0. These nullvectors are clearly all

(I—1)(J—1) of them. Consequently,

dim(Null[A})=(7-1)(J-1),
and we now have a basis for the nullspace DY of A to work with. Note that for

1 €< d, the inner product of &, with any lie V, is

A velocity vector of this form is discretely divergence free with zero net flow
&

through every cell in the mesh, and with A

linearly independent, and there are 4

d=

(12)

+u,-+1,j—u,.,j~6v Oou
Ax  dx oy

Ui j— Ui j+1
Ay

i

(éla
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ot the discrete curl, where the derivatives are evaluated at the grid intersection
about which the nullvector &, is defined. The nullvectors {&,}¢_, for A will be
arranged in order as the columns of a (2IJ— I —J) x d matrix C.

For the sake of completeness, the matrix A and its nullvectors {&,}7_, for a 4 x 4
uniform mesh are given in Figs. (2¢)~(2d) as two arrays. The entries in each array
have been labeled by cell and by velocity component within cell. On this mesh there
are 3 unknown u velocities for each of the 4 mesh rows, and 4 unknown v velocities
for each of the first 3 mesh rows, so that an element in DY will have 24 components.
The pressure on this mesh will have 16 components. The 16 x 24 matrix A multi-
plied by the scale factor h=Adx=Ay is presented in Fig. 2c. The d=9 scaled
nullvectors for A are given in Fig. 2d. This basis is identical to the one given by
Amit et al. [1], but can be obtained using local mass balance as above instead of
network theory.

The divergence constraint is defined for discrete velocity vectors with
homogeneous boundary data, so there is no need to follow the general method of
Section 2 and find a particular solution of the continuity equations W,(t)e V), to
account for the boundary conditions of this problem. Since @™ € D} at time ¢,,, and
since W,(t) € V), is not needed, there exists scalars {z7'}{_, such that

d
=) 7§ =Cz", (13)
I=1

where 2" = (z7, z7, ..., z7)". Equations for {z7'}#_, are obtained by substituting the
expansion (13) into (9), and then taking the inner product between each of the
expansion vectors {&}7_, and Eq. (9). The inner products between the expansion

vectors and Eq. (9) can be simultaneously computed by premultiplying (9) with the
transpose of C to obtain

1 1 1 1
CT n+l _ T n, _ T n+1 el n
yr Cz —AIC Cz +2C na(Cz )+2C na(Cz")

1 1
+5CTAT13"“+§CTAT13"=O. (14)
But each column of C is a nullvector for A, so that
CTAT=(AC)'=0,
and we may therefore write Eq. (14) as
T n+1 At T n+1 T n At T
C Cz +—2—C na(Cz"**)=C"Cz ——2-C na(Cz"), (15)

where na is a nonlinear operator. Equation (15) for this algorithm corresponds to
the general equation (7) with =131 The unknown velocity &"*! is found from

581/84/1-15
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Eq. (13) after the expansion coefficients z"*' are obtained as the solution to the

nonlinear system (15), using the known solution at time ¢,. The essential issue in
developing a code from (15) is the solution of the nonlinear system. The usual
methods (see Ortega and Rheinboldt [14]) require the Jacobian CT(dna/di)C,
which has only 13 nonzero diagonals in this case. Any component of this matrix
product can be written as the sum of 16 terms from dna/dil, so the computational
overhead for the calculation of this matrix product can be avoided.

For many applications the nonlinear implicit equations (15) present too great a
computational overhead to be practical. An alternative algorithm that is more
efficient may be derived from the primitive variable Crank-Nicolson Adams-
Bashforth scheme (8) with lagged nonlinear terms. The diffusion terms are treated
implicitly to avoid the numerical stability restrictions from the viscous terms, and
the convection terms are lagged to avoid the computational effort of solving a non-
linear system at each time step. If we use the notation of (8), then this discretization
of the primitive variable momentum equation (la) without the body force may be

written as
Gr+1_ §n 1
Y Bov(ii) —ov(@ ') — i@+ 1) — d(@")),
At 2
1
+§(ATI3"“+AT15")=0, (16)

where cv and df are discretizations of the convection and diffusion terms, respec-
tively, and where AT is a matrix representation of the discrete gradient operator as
above in-this section. If C is the matrix with nullvectors of A for its columns as
above in this section, then the FDG method applied to (16) as the underlying
primitive variable discretization will lead to

CTCzn+ 1_ %t_ CT df(czn+ 1)

3 dr

4
—CTCr + 7’ CT df(Ca) =

A
crcv(cZnH?’Cch(Cz"-‘), (17)

where cv is a nonlinear operator. There are various ways to efficiently deal with the
linear problem posed by the resulting block pentadiagonal coefficient matrix for the
implicit terms in (17), as in Roache and Ellis [17]. Amit efal. [1] use a frontal
technique for solving analogous equations from the dual variable method. General
techniques for solving banded or sparse linear systems are also available.

As an estimate of comparitive efficiency for cither of these schemes, the primitive
variable formulation in space dimension s has O(M; + m;) = O((s + 1)m,) unknown
discrete velocity components and pressure values at each time step, while the FDG
method has only O((s — 1)m,) unknown coefficients at each time step. The reduc-
tion in the number of variables is O(2m,), or a factor of { in R? and a factor of }
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in R3. When storage requirements and operation counts are considered the reduc-
tion in effort becomes even greater. Note that the FDG method produces algo-
rithms in which the order of the number of unknowns is equal to that for stream-
function or velocity potential algorithms with fourth-order governing equations in
R? or R?. It should also be noted that the algorithms in this form do not actually
require the computation of the various matrix products with C and C”, since each
of the terms in Egs. (15) and (17) can be obtained as the weighted sum of at most
16 scalars. The next section will show that the dual variable or finite difference
Galerkin algorithms can actually be interpreted as streamfunction algorithms. This
discovery resulted from trying to understand and simplify the product terms in the
FDG algorithms as expressed in Egs. (15) or (17).

4. THE DISCRETE STREAMFUNCTION INTERPRETATION

Even though the algorithm development using the FDG method is formally com-
plete, it is useful and informative to consider (15) and (17) in greater detail. As
above, let us write na(il) = cv(ii) — df(ia), where cv and df are the discrete represen-
tations of the convection and diffusion terms. It will be convenient to introduce an
indexing for the expansion coefficients {z}'}{_, as a 2-dimensional array

{z7 1<i<I-L1<j<T -1},

where z7; is the i+ (j— 1)(/ — 1) component of z™. This is a natural ordering of the
expansion coefficients, since it associates the (i, j) coefficient with the nullvector for
A that represents a flow through the four cells around the intersection of grid lines
in the upper right-hand corner of the (i, j) cell. Both indexings for the expansion
coefficients will be implicitly used in the next three equations, with the left-hand
sides of the equations using the single subscript /, and the right-hand sides using the
double subscripts {i, j}. The premultiplication of the discrete momentum equations
by CT can easily be analysed locally throughout the grid, or by rows of the
resulting product. If a row of CT corresponds to the null vector with coefficient z, ,,
then the corresponding component equation of the premultiplied momentum
equations is just the weighted sum of the discrete momentum equations for the
primitive velocity components u; ;, u;;,,,0,,;, and v,,, ;. The discrete velocity
components can now be replaced by the appropriate components of Cz"*!, Cz”,
and Cz" ', as given by (21a)-(21b) below, and the details of transforming Egs. (15)
and (17) into Eqs.(18) and (19) become apparant. These calculations are
straightforward but messy algebra and are included only in summary because of
their length. With these conventions, and at time z,,,

CTCz" = La(z™),
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where La is the conventional S-point centered difference approximation to the
Laplacian,

1
CT df(Cz™) = Re Bi(z™),

where Bi is the conventional 13-point centered difference approximation to the
biharmonic operator, and

C7 cv(Cz™) = 6,(6,(z") La(z")) — ,(0.(z™) La(z™)),

where 6, and ¢, are the conventional centered difference operators

zn =z " —z™
6 (zm - i+1,7 =4 and 5 (zm)_ = hjt+1 z,!-l.
x )I,J 2 Ax ¥y i, j 2Ay

The actual equation for CT cv(Cz™) is given in an Appendix. With this notation, we
may write (15) as

At
La(zn+l)_mBi(zn+l)

+Z 0.6, ) La@ =) - 6,627+ La(z )]
4t . At
= La(z") + =—— Bi(z") — = [0,(3,(2") La(z")) — 8,(3,(z") La(z"))], (18)
2 Re 2
and we may write {17) as

At
La(zn+1)___Bi(zn+l)

2 Re
— La(z") + =21 Bi(z") — 221 [5 (5, (z") La(z")) — 8,(5.(z") La(z"))]
2 Re 2
+2 18,6, ) La@ =) = 3,67 ) La@" 1)) (19)

Let us take 2™ to be a discrete approximation at time ¢,, of a scalar function y
defined on Q, where the discretization z™ is defined at the (/— 1)(J— 1) points of
intersection of the grid lines between the mesh cells in the staggered grid. Note that
the approximation

z"xyY(t,,)

is defined at the same discrete times as the primitive variable solution, but that it
is defined on a different spatial grid. Now notice that the linear terms in (18) and
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(19) represent a conventional centered space approximation for the linear terms in
the fourth-order stream function equation

oay _1 ., 0 o o
RV T 5 (20)

Taylor series expansions of these two algorithms show that they are in fact second-
order centered space discretizations of the fourth-order streamfunction equation
(20). The usual streamfunction boundary conditions for this problem are ¢y =0 on
the entire boundary 09, and dy/dn =0 on the walls while dy/on=1 on the lid.
These boundary conditions are consistent with the modification of algorithms (18)
or (19) in cells near the boundary that results from using conventional primitive
variable exterior cell velocity boundary treatments. Consider also the recovery of
the velocity components in (13). From Fig. 2a we see that u, ; on the right-hand
face of the (i, j) cell has flow contributions only from the nullvectors €, for
I=i+(j—1)(I—1) when j<J—2, and for =i+ (j—2)(I— 1) when 2 <, with

1 oy
“i,j‘_‘A_y (Zi,j—'zi,jfl)zg- (21a)
Similarly, v, ; on the top face of the cell is
i oy
Oiy= gy Gimn T 2 = (21b)

If z™ is interpreted as a discrete vector field perpendicular to the (x, y) plane, then
the entire discrete velocity field is & = Cz”, so that premultiplication by C may be
interpreted as taking the discrete curl of z”. Recall that a discretization was initially
formulated in terms of the primitive variables and then premultiplied by CT in (15)
or (17), and by (12) this may be interpreted as taking the discrete curl of the
discrete momentum equation, where the resulting product only has nonzero
components perpendicular to the (x, y) plane. We may therefore interpret z™ as
defining a discrete streamfunction at time ¢,, on the (I— 1) x (J— 1) points of inter-
section of the grid lines between the mesh cells in the staggered grid. For the
primitive variable discretization and nullvectors of A that we have chosen, the dis-
crete manipulations of the FDG method are the exact analog of the manipulations
of the continuum Navier-Stokes equations that are used to derive the fourth-order
streamfunction equation.

When a staggered grid is used, the resulting staggered velocity components must
be interpolated in order to obtain all of the velocity components at the same grid
point. Let us average the x velocity components in the y direction and the y
velocity components in the x direction, with

m __ Lf, m m m __ ls.m m
Ui,j—2(ui,j+1 +u?) and Vii= 2(vi+1,j+vi,j)’
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for 1<i<I—1 and 1<j<J—1 at time ¢,. For the usual centered difference
operators defined above,

0.(UT))+6,(V7))=0,

so that in this sense the interpolated solution is exactly divergence free throughout
the interior mesh and at every time ¢,. The interpolated velocity solution

(U7}, V7)) may also be obtained directly from the discrete streamfunction solution
as

Ui,j=2_A_y (Zi,j+1_zi,jf1)z‘5—;
and

m 1 A4

m
(T 7 —z7 )=
iLJ 2Ay i+1,j i—1,j ax’

where the derivatives are evaluated at the intersection of the grid lines at the upper
right corner of the (i, j) cell. We can formulate a primitive variable discretization
using the advantages for mass balance of a staggered grid with velocity components
defined on cell faces, then use the FDG method to obtain a related streamfunction
algorithm that automatically creates a streamfunction boundary treatment from the
primitive variable boundary treatment, and finally recover a discretely divergence
free velocity solution with all components defined at every grid point. Both types
of mesh may be used where they are convenient, and a pressure solution never has
to be considered unless it is desired.

There are two possible views of the FDG and dual variable methods. If attention
is focused on the primitive variable discretization, then these methods may be
viewed as variable reduction techniques that can lead to a more efficient solution
of the primitive variable algorithm equations. If attention is focused on interpreting
the application of the FDG and dual variable methods, then for 2-dimensional
problems these methods may be viewed as techniques for developing streamfunction
algorithms that are based upon the underlying primitive variable discretization and
its properties. If appropriate choices are made in the discretization, then the FDG
and dual variable methods will produce an algorithm for the fourth-order stream-
function equation which will give a discrete primitive variable solution with charac-
teristics inherent in the primitive variable discretization. In their discussion of the
FDG method for steady problems Stephens et al. [19] suggested that a discrete
streamfunction interpretation is possible for the coefficient vector z. Amit et al. [1]
point out that their dual variable algorithm does not lead to a discretization of the
fourth-order streamfunction equation (20), but that (21a)}-(21b) do hold for their
method, so their dual variables may be intepreted as a discrete streamfunction. The
streamfunction interpretation of the coefficient vectors depends upon the choice of
the basis vectors for the nulispace of A, and the choice of the primitive variable
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discretization. If a choice of the basis vectors for D? is made so that (21a)-(21b)
does not apply, then the discrete streamfunction interpretation of the expansion
coefficients z” would be unreasonable. If a basis for the nullspace of the discrete
divergence operator is chosen so that (21a)-(21b) does hold, then the streamfunc-
tion interpretation is reasonable even if the algorithm for z”*! is not recognizable
as a discretization of the streamfunction equation (20). There is a nonsingular
transformation between any two bases for the nullspace of the discrete divergence
operator, so that the expansion coefficients with respect to any basis will uniquely
determine the expansion coefficients with respect to any other basis. In this sense,
an expansion coefficient solution with respect to any basis may be interpreted as a
discrete streamfunction. For 3-dimensional problems the FDG and dual variable
methods are related to the formulation of algorithms for the velocity potential.

5. SOLVING GENERAL FLOW PROBLEMS

The analysis of the divergence constraint is the crucial issue for applying the
FDG method to general problems, and results in the decomposition of the discrete
solution vector @™ at time ¢,, as the sum of two discretely divergence free vectors
" =W} +Wg, with W' assuming any boundary values imposed on the solution,
and with Wg equal to zero where boundary values are prescribed. If A is the matrix
representation of the discrete divergence operator for some choice of grid and
primitive variable discretization, then the issues are to f}_nd a basis for the nullspace

-2 Py

Mun only once, but the parucular solution w, might need to loun! al every

time step if the boundary data changes with time. The continuous solution at any
time must satisfy

j V.udo=0. (22)

If we interpret the separate continuity constraint equations as applying to each grid
cell or at each grid point, and if an appropriate conservative discretization is used,
then the discrete analog of (22) is that the weighted sum over the grid of the
separate continuity constraint equations is zero. For problems in which the discrete
boundary velocities are all specified, at least the last row of A is a linear combina-
tion of the previous rows, so that A is not of full row rank, and the prescribed
boundary data must be consistent in the sense that the last component of b is the
same linear combination of the previous components. The consistency of the
boundary data is a discrete analog of (le). Amit et al. [1] have proven that for
general flow problems and grids A has full row rank if the discrete boundary
velocities are not prescribed on at least part of the boundary. The problems of
finding a particular solution and a basis for Nuli[A] when A has full row rank also
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occurs in structural analysis, and four techniques based on the LU and QR decom-
positions have been presented in Kaneko, Lawo, and Thierauf { 10] for the solution
of these problems. These techniques are independent from the dimension of the
problem, from the grid used for the discretization, and from the finite difference
approximations that are used. For a general problem the discrete continuity equa-
tion may be written as

Aw=h, (23)

where A is an M x N matrix, wis Nx 1, and b is M x 1. We will assume that M < N.
If A is not of full row rank, then Rank[A]= M — 4, so that

d=dim(Null[A])=N-M+4.

Since there are § dependent equations in the linear constraint system, there is an
M x M permutation matrix P, and an M x (M — §) matrix R such that

A=P (:‘) =PRA, and b=P (:1) = PRb,,

2 2

where A, is (M —38)xN, A,is 6xN, b, is (M—-3J)x1, b, is dx 1, and where A,
has full row rank. The methods of Kaneko et al. [10] may now be used on A, and
the results can be adapted to A. The dual variable method (see Amit et al. [1] and
Hall [8]) uses network theory algorithms to solve these problems.

A basis for the nullspace of A and a particular solution to (23) can both be found
even for quite complicated problems by the methods of Section 3 that are based on
mass balance considerations. We will present simple examples of how to deal with
two specific problem types using a staggered grid. Figure 3(a) presents a 4 x4
syaggered grid for a typical throughflow computation. We will use the same
indexing as in Section 3. The u velocity for i=0 and j=1, 2, 3, 4 are specified as the
given inflow, the u velocity for i=1,2,3,4 and j=1, 2, 3, 4, and the v velocity for
i=1,2,3,4and j=1, 2, 3 are all undetermined. The v velocity for j=0 or j=4 and
i=1,2,3,4 are all set to 0 as wall velocities. There are 28 unknown velocities and
16 unknown pressure values. The discrete divergence matrix A is 16 x 28, and AA
is given in Fig. 3(b), where h=Ax = Ay. In this case the data vector b from the
prescribed inflow has transpose

1
BT=}—1 (uo,l, O, 0, 0, UO,2, 0, 0, 0’ u0,3, 0’ 07 Os u0,4’ 0’ 0’ 0)’

where {u, ;}4_, are velocity components that are normal to the inflow boundary.
The equations Aw,=b add up to

1 4 4
uO,j or Z( Z u4,j_ Z uo’j) = 0,
Jj=1 1

j=
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Fic. 3. (a) A 4x4 grid for a throughflow problem. (b) Components of A for a 4 x4 grid with
throughflow, scaled by A.

and this is just the discrete mass balance equation for flow in and out of the entire
computational domain. In this case A has full row rank (see Amiteral. [1]), and
the nullspace DY of A has dimension

d=dim(Null[A]) =28 — 16 = 12.

Nine linearly independent nullvectors for A can be found just as in Section 3, and
are illustrated in Fig. 3(a) as the flows around the grid intersections for 1<i<3
and 1<;<3. The remaining three nullvectors are illustrated in Fig. 3(a) as the
semicircular flows in and out of the downstream boundary around the grid inter-
sections for i=4 and 1< j<3. These last three nullvectors multiplied by & have
transposes

he,=(0,0,0,0,0,0,1, -1,0,0,0,0,0,0, —1,0,0,0,0,0,0,0,0,0,0,0,0,0),
hey,=1(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0, —1,0,0,0,0,0),
ke 5=1(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, —1,0,0,0, —1).

One particular solution is easy to find, with the inflow being washed straight
downstream and out, with transpose scaled by A

hﬁ': =(a,0,a,0,4,0,a,0,b,0,5,0,5,0,b,0,¢,0,¢,0,¢,0,¢,0,d,d,d,d),
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where a=uy, b=u,,, c=uy;, and d=u,,. Another particular solution can be
obtained by introducing a flow along the inflow boundary cell layer and up to the
upper wall, then down the wall surface, and out the upper outflow boundary cell.
If a, b, ¢, and d are the prescribed flows across the inflow boundary, then this other
particular scaled solution is

hw; =(0,4,0,0,0,0,0,0,0, ¢
+b,0,0,0,0,0,0,0,a+b+c,0,0,0,0,0,0,e,e,e,e),

where e=a+ b+ c+d. The particular solutions merely state that what goes into
the grid must come out at each time step or that mass must be discretely globally
conserved. Independently from the choice of nullvectors and a particular solution,
the momentum equation algorithm for interior cells must be modified near the
boundary to incorporate whatever boundary treatments are being used. After
discrete equations that incorporate boundary treatments have been formulated for
each of the unknown velocity components on the grid, and with the use of a
particular solution such as those above, the FDG method can be employed to
expand the solution with respect to the nullvectors obtained above and to derive
equations for the expansion coefficients as in (15) and (17) from Section 3.

Figure 4 illustrates a portion of a MAC grid for a problem with an obstacle. The
illustrated flow € around the obstacle is discretely divergence free, and must be
included as an independent vector in the basis for the nullspace of the matrix
representation A of the discrete divergence operator. Let us assume that this grid
is a portion of the I'xJ grid for a driven cavity problem which is otherwise the
same as in Section 3, and with the same discretization as in Section 3. With this
assumption there are (/—1)J+ I(J—1)—4 unknown velocity components, there
are IJ—1 unknown pressure values, and there are (/—1)(J—1)—4 discretely
divergence free vectors that are defined around cell corners as in Section 3.
The matrix A is (IJ—1)x(2QIJ—I—J—4) with row rank IJ—2, so that
d=dim(null[A])= (/—1)(J— 1) — 3. The additional nullvector ¢ will complete the
basis of DY for this problem. Note that there are only d—1 components for the
discrete streamfunction z” as defined above in Section 3. The extra nullvector €
will have an expansion coefficient which may be considered as a streamfunction

™ AWaAY
\{JK./ 1 \1] @ a nullvector on the interior grid
S
P U a nullvector flow around the obstacle
DA
N AN
N/ AWAAY
PANVANY

FiG. 4. A 4x4 grid segment for flow with an obstacle.
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value on the surface of the obstacle. It is possible to solve this problem without
introducing the nullvector ¢ and its expansion coefficient into the FDG method. If
Yo is the known value of ¥ on any bounding surface, and if y is the unknown

=1 _rC_ .34 3 1.4 1 a1

 —

lps—lﬁ(,:Judy—vdx:O,
Y

where the line integral is along any path y through the flow domain from the boun-
ding surface where y/, is known to the embedded obstacle (as in Batchelor [2]).
The discrete analog of this can be used to calculate the value of the discrete stream-
function on the surface of the embedded obstacle, and this value would then be the
expansion coefficient for the extra nullvector €& The FDG method may now proceed
with the expansion and equation derivation with just the usual nullvectors for A in
C as above in Section 3. The advantage of not using the extra nullvector € in the
FDG process is that the bandwidth and general from of the equations derived for
the expansion coefficients will not be disturbed by the introduction of an expansion
vector that flows through relatively many computational cells. More general
problems with obstacles embedded in the flow can be handled in a similar fashion.

6. NUMERICAL EXAMPLES

In this section we will present the results of numerical calculations obtained with
the Crank-Nicolson Adams—Bashforth algorithm from Eq.(17). The coefficient
matrix for the linear terms at time t"*! is constant in time and was factored before
time stepping with a LINPACK banded LU decomposition subroutine. A LIN-
PACK banded backward solution subroutine was used to solve the linear system
for each time step. The reported calculations are for the asymptotic steady state
results in a square driven cavity at Re =400, 1000, and 3200, and for the time
evolution or vortex dynamics at Re=1000 in a square driven cavity and in a
rectangular driven cavity with aspect ratio 2. The cavity lid is always the upper
surface, the lid is always impulsively started, and the lid always moves from the left
to the right. The calculations in the square driven cavity are all with 4r=0.01 on
a grid with 64 by 64 cells, and the calculations in the rectangular driven cavity are
with 4¢1=0.025 on a grid with 40 by 80 cells. The criterion for convergence to
steady state was generally taken to be

J@"* ! —a"| ;- _8
WS 50x10°,

where |if/; is the L, norm obtained as the sum of the absolute value of all velocity
components on the interior grid multiplied by the cell size. The only exception was
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the lid velocity u,
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for the square cavity computation at Re = 3200, where convergence was taken at
t =250, with

ot =), .

T <€274x1077,

The reported computational results for the asymptotic steady state cases are com-
pared with the published data in Ghia, Ghia, and Shin [5], while the reported
computational results for the time evolution cases are compared with the vortex
dynamics published in Gustafsen and Halasi [6, 7].

The asymptotic results for the square driven cavity are given in Figs. S(a)-(c)
for Re=400 at ¢t=46.63, in Figs. 5(d)}-(f) for Re=1000 at r=99.94, and in
Figs. 5(g)-(i) for Re=3200 at ¢ =250. Figures 5(a), (d), and (g) give streamfunc-
tion contours overlayed with directional vector plots for the velocity fields. These
three plots all agree qualitatively with published results and show the primary cen-
tral vortex, secondary vortices in both of the two lower corners, and a secondary
vortex in the upper left corner for Re =3200. The 64 by 64 grid resolution is too
coarse for the resolution of any additional vortices in the corner vortex cascades.
Figures 5(b), (¢), and (h) give the profile of the x velocity component u as a func-
tion of y for x=0.5, and Figures 5(c), (f), and (i) give the profile of the y velocity
component v as a function of x for y=0.5. The results from Ghia et al. [5] for a
grid with 128 by 128 cells are overlayed on these plots. The local extremes for the
x velocity component u near the bottom wall differ from the results in Ghia et al.
[5] by 2.2% at Re =400, by 4.6% et Re =1000, and by 12.5% at Re = 3200. The
local extremes for the y velocity component v near the downstream wall on the
right differ from the results in Ghia eral. [5] by 1.6% at Re=400, by 3.9% at
Re =1000, and by 11.9% at Re = 3200. The velocity profiles are in excellent agree-
ment at Re =400, they are in very good agreement at Re = 1000, and they are in
reasonable agreement at Re =3200. The local extremes for the streamfunction in
the primary vortex are ¢ = —0.1198 at Re =400, = —0.11359 at Re = 1000, and
Y = —0.10646 at Re =3200. These differ from the published results in Ghia et al.
[5] by 1.7% at Re =400, by 3.7% at Re = 1000, and by 11.6% at Re = 3200. The
local extremes for the streamfunction in the lower downstream secondary vortex are
¥ =0.0005749 at Re=400, =0.001892 at Re=1000, and  =0.003637 at
Re =3200. These differ from the published results in Ghia eral [5] by 10.5% at
Re =400, by 8.1% at Re =1000, and by 15.8% at Re =3200. The strengths of the
primary vortices agree with the published data as well as the local velocity
extremes, while the strengths of the main secondary vortices are in only fair agree-
ment with the published data from finer grids. The overall agreement with the
published data in Ghia et al. [5] is excellent at Re =400, very good at Re = 1000,
and reasonable at Re = 3200. The computations for Re = 3200 were stopped with a
relative L, norm change in the flow field that is five times larger than for Re =400
and Re = 1000. This relatively premature end of the calculations for Re = 3200 will
have made a contribution to the error for the asymptotic results in this case.
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FiG. 6. Time evolution of the square cavity, Re = 1000, 64 x 64 grid, streamfunction contours over-
layed with directional vectors: (a}~(f) z= 1.0, 40, 5.8, 8.0, 16.0, 32.0, respectively.




UNSTEADY NAVIER—STOKES EQUATIONS 235

577 N [Grrraaer
R AAAIITIII IR IS £ 333 FHAAAS Lot 4 £ L 44 EEEES
PR A A17333375 520733483 33323333322333332333335% ;i P 33353333550y 3> BN
RRETEARSAAA e TR IRt Y B 434344 AINY
» £3 FEEES 33 32 \-l“_«v W 3 333332353 MM
4 > 3377353332 333523333330 04vy: 833533 FEEEY
ARA 1) 2222 RRAD: M 44 Sa
A 773 23 > 22 v
P 3 33 IV ¥
1 »> b S A
i Y A
A 7338 Y v p¢
v
Nydvdeedvdy roey 23 y
N viviy Aparqany
s b viviv pangaa v v
724 YivEY) Jaaaf 4
3 Vi =1
3277 EERCA ¥ gberer) ¥ 33 q
1 2 3 v Aaadanh A 233N )
A o ' (
ahaa T (4 A 3 i A Ad vk
ML ¥ Y 3N b
e ! Lo vivdvy i qrag ¥
s I 3224 3 1
"y T £ 4rada £¥es Joveivridy 4
rer A, £ A f
1 £ v T
RARK s ¥ < b4
» A ¥ f b
n 447144
Al /h 4 Ay 3 v 4
o < '3 3 j4
b A b
BArnA 355 £ P
A 3
5 Al %]
%% " oLk
< =7
¥ A
Al A
ArRR 4 v I (et Lifes
AN < A IS & oL
»; 777 (ol Iy tevies L ,,
AR < A N $e<l 7
ARR Terfa [y ¢ <)
RRREE Cinafadda L o
Rer P o a A I 3 SR d
rRE V377944 y vy & *
Bt b eet s e 7 wig SRS 233
Tr 317274 e
Syere 34 AL AT Ay Raerhe s S3ediagada
MRALEI83288831 TTrres e R 23 433367 AN > 2aL%: L 228
TreeveeY 233 3
ESR FARS 5225351 « piR2ds 253 3Ty WA LTINS & 3
e f

Fi6. 6—Continued

The time evolution of the driven cavity for Re = 1000 with a 64 by 64 grid is
presented in Figs. 6(a)-(f). These figures show streamfunction contour plots over-
layed with directional vectors from the velocity field. The interesting feature of these
figures is the development in time of the vortex dynamics in the cavity. In Fig. 6(a)
at t=10 the outer streamfunction contour has begun to lift away from the
downstream wall close to its top near the moving lid. By t=4.0 in Fig. 6(b) the
negative streamfunction contours around the primary vortex are very distorted by
the development of a relatively weak positive streamfunction peak on and around
a small recirculation bubble that is located halfway down the right wall. Note that

the flow separates above this small recirculation and then reattaches below it, while
M S42 ™ 1 ad c2cssaacl otk 11 P |

culation on the right wall and reattachment on the bottom wall. Note that the
positive streamfunction peak is still above the corner. At +=8.0 in Fig. 6(d) the
recirculation on the wall has moved almost entirely into the corner, although it is
still underdeveloped along the bottom wall. Note that a distinct recirculation has
started in the lower left corner. At t=16.0 in Fig. 6(e) the general form of the
primary vortex and the two secondary vortices in the lower corners has been
established. The development from =160 to r=32.0 in Fig 6(f) and the
asymptotic state at ¢ =99.94 in Fig. 5(d) is just a strengthening of the vortices that
are already present by r=16.0. In the driven cavity there is no bubble type
recirculation on the right-hand wall for Re =400, but the general pattern at
Re=1000 and higher is for the secondary vortex in the lower right corner to
develop from a separate eddy on the downstream wall that coalesces with a weaker
corner recirculation. The bubble type recirculation on the right hand wall begins to

581/84/1-16
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appear between ¢=3.6 and 3.8 for Re =1000, and between ¢=2.0 and 1=3.0 for
Re =3200. As Reynolds number increases, the distinct bubble recirculation on the
right-hand wall begins earlier and becomes stronger before it coalesces with the
corner recirculation on the lower right. The secondary vortices in the lower corners
of the square driven cavity begin to appear at about t=1.5 on both sides at
Re =400, at about = 3.2 on the right side and ¢ = 7.2 on the left side at Re = 1000,
and at about = 6.5 on the right side and 7= 11.5 on the left side at Re = 3200. The
occurrance of the secondary vortices in the lower corners is delayed by the develop-
ment of the bubble recirculation on the right-hand wall, with a greater delay for the
recirculation in the lower left-hand corner. The recirculation in the lower right
corner inherits much of its initial strength from the recirculation bubble that
descends along the wall to join with the corner recirculation. This pattern is
consistent with the vortex dynamics for deeper cavity flows that have been reported
by Gustafson and Halasi [6, 7]. The appearance of the recirculating bubble in the
middle of the wall on the right for Re = 1000 in the early stage of flow development
for the square driven cavity has been reproduced at about r=4.0 using the
nonlinear Crank—Nicolson method of Soh and Goodrich [18].

The time evolution of the driven cavity with aspect ratio 2 for Re = 1000 with a
grid having 40 by 80 cells is presented in Figs. 7(a)-(j). This problem with the same
grid resolution has previously been presented in Gustafson and Halasi [7].
Figures 7(a)-(j) show streamfunction contour plots overlayed with directional
vectors from the velocity field. The deeper cavity gives rise to more interesting
dynamics, and the streamfunction contours with directional vector overlays show
the dramatic extent of the effects due to the secondary vortex that begins to develop
along the downstream wall. Figure 7(a) shows a nearly symmetric flow at 1=0.1.
Figure 7(b) shows the early strengthening of the primary vortex and the early
distortion of its outer streamfunction contours along the downstream wall near the
lid. Figure 7(c)-(d) show the presence of a recirculating vortex on the downstream
wall with the development of a relatively weak positive streamfunction peak. From
t=60 to r=8.0 in Fig. 7(¢) there is the development of two new and distinct
recirculating vortices in the lower corners. By #=10.0 in Fig. 7(f) all three of the
secondary recirculating vortices have joined together in one massive recirculating
region along the boundary from the center of the downstream wall down to and
along the entire lower wall. By 1=12.0 in Fig. 7(g) there is a dramatic breakout of
this secondary vortex from the lower wall and deeply into the lower half of the
cavity. By t+=16.0 in Fig. 7(h) this secondary vortex has developed to the point
where it fills the lower half of the cavity. By r=28.0 in Figs. 7(i) there are tertiary
vortices developing in both of the lower corners, and the general pattern for the
asymptotic flow field is present. From this point on the development of the flow field
in the cavity merely stengthens the vortices that are present until the asymptotic
result is reached by = 165.675 in Fig. 7(j). These vortex dynamics are in agreement
with those observed by Gustafson and Halasi [7].

The computational results that we have reported are in very good agreement
with the published results for the problems that have been treated, within the
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by back substitution at each time step. This solver requires storage on the order of
the cube of the number of grid cells along the cavity side. The memory constraint
of the system that was used for the calculation of the reported numerical results
limits the grid resolution to a 64 by 64 grid with this solver. The algorithm based
on (17) and (19) is effective, but the ancillary solver needs to be improved in order
to efficiently obtain fine mesh resolutions. A new solution procedure is being
implemented with algorithm (17) and (19), but with a much more efficient solver
for the associated linear equation problem at each time step. Results with higher
resolution and at higher Reynolds numbers will be presented with the refined
algorithm.

7. SUMMARY

The FDG method was extended to time dependent incompressible Navier-Stokes
equations with a continuous time formulation that is valid in two or three space
dimensions. A detailed example of algorithm development was given for the driven
cavity using a staggered grid and central differencing for the primitive variable
scheme. It was shown how mass balance in the primitive variable formulation can
be used to solve the essential problems associated with applying the FDG method
for general problems in two dimensions. The use of the FDG method with this
underlying discretization in two dimensions was shown to be the discrete analog of
the continuum manipulations that lead to the fourth-order streamfunction equa-
tion. This method of algorithm development can use a staggered grid and mass
balance for a primitive variable formulation, with the FDG method leading to a
reduction in the number of variables, while the discrete streamfunction interpreta-
tion of the derived expansion variables gives a primitive variable solution that is
discretely divergence free and that has all velocity components defined at the same
point. Asymptotic and time evolution results obtained with a Crank-Nicolson
Adams—Bashforth algorithm for Re =400, 1000, and 3200 were shown to be in
good agreement with published data. The dramatic evolution of secondary vortices
from bubble recirculations starting on the wall was shown for Re = 1000. Computa-
tional experience was reported for Re up to 100,000 with mesh Reynolds number
up to 5000 and without any spatial oscillations, even though central differencing
was used for all space derivatives.

APPENDIX: THE NONLINEAR STREAMFUNCTION TERMS

To see the detailed structure of the convection terms in (18) and (19), we will
look more closely at CT ¢cv(CZz™). It will be convenient to reindex the components
of z™ at time ¢,, by the cells with which they are associated in the natural mesh
order as discussed above. Let z["; be the i+ (j—1)(/—1) component of z", for
1<i<l—-1and 1<j<J— 1 If h=1/4x=1/4y, then with these conventions, we
may write the convection terms at time ¢, as
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At e cv(Cz™)

At
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